

建議加工數據 Recommended cutting condition
高速高硬度加工系列（奈米微粒系列）
High Speed Cutting and High Hard Cutting Series（Nano Micro Grain Carbide Series）
建議加工數據
Recommended cutting condition
－NBN ．NBX

| Material | Carbon Steels ．Alloy Steels S45C，FC ，FCD ，SCM，S50C，SKS．．． |  | Alloy Steels．Tool Steels SCr ，SNCM，SKD11，SKD61，NAK80 |  | Hardened Steels SKD11 |  | Depth Of Cut |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hardness | $\sim$ HRC30 |  | $\sim$ HRC50 |  | ～HRC60 |  |  |
| Radius | speed（mim ${ }^{-1}$ ） | feed（mm／min） | speed（mimi ${ }^{-1}$ ） | feed（mm／min） | speed（mim ${ }^{-1}$ ） | feed（mm／min） |  |
| R1 | 23000 | 2000 | 22000 | 1800 | 16000 | 900 |  |
| R1．5 | 16000 | 2000 | 15000 | 1800 | 11000 | 900 | HRC45 $\downarrow$ HE0．04R |
| R2 | 15000 | 2400 | 14000 | 2000 | 10000 | 1300 | S0．06R |
| R3 | 17000 | 5500 | 14000 | 5000 | 9000 | 1500 |  |
| R4 | 12000 | 4000 | 9000 | 3000 | 6200 | 1400 |  |
| R5 | 9000 | 3500 | 7000 | 2800 | 5200 | 900 |  |
| R6 | 8000 | 2800 | 6500 | 1800 | 4300 | 800 | HRC45 $\uparrow$ HS0．02R |
| R8 | 7000 | 2000 | 5000 | 1500 | 3300 | 700 | $R=$ Radius $\quad P \leq 0.03 \mathrm{R}$ |



| Material | Carbon Steels．Alloy Steels S45C，FC，FCD，SCM，S50C，SKS．．． |  | Alloy Steels．Tool Steels SCr，SNCM，SKD11，SKD61，NAK80 |  | Hardened Steels SKD11 |  | Depth Of Cut |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hardness | $\sim$ HRC30 |  | $\sim$ HRC50 |  | ～HRC60 |  |  |
| Radius | speed（mim ${ }^{-1}$ ） | feed（mm／min） | speed（mimin | feed（mm／min） | speed（mimi ${ }^{-1}$ ） | feed（mm／min） |  |
| R1 | 23000 | 2000 | 22000 | 1800 | 16000 | 900 |  |
| R1．5 | 16000 | 2000 | 15000 | 1800 | 11000 | 900 | HRC45 \ H $50.04 R$ |
| R2 | 15000 | 2400 | 14000 | 2000 | 10000 | 1300 | Ps0．06R |
| R3 | 13000 | 3200 | 11000 | 2000 | 9000 | 1500 |  |
| R4 | 9000 | 2300 | 8000 | 1500 | 6200 | 1400 |  |
| R5 | 7500 | 1900 | 6500 | 1200 | 5200 | 900 |  |
| R6 | 6300 | 1600 | 5500 | 1000 | 4300 | 800 | HRC45 $\uparrow H \leq 0.02 R$ |


| Material | Carbon Steels ．Alloy Steels S45C，FC ，FCD ，SCM，S50C，SKS． |  | Alloy Steels．Tool Steels SCr，SNCM，SKD11，SKD61，NAK80． |  | Hardened Steels SKD11 |  | Depth Of Cut |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hardness | $\sim$ HRC30 |  | $\sim$ HRC50 |  | $\sim$ HRC60 |  |  |
| Radius | speed（mim ${ }^{-1}$ ） | feed（mm／min） | speed（mimi ${ }^{-1}$ ） | feed（mm／min） | speed（mim ${ }^{-1}$ ） | feed（mm／min） |  |
| R0．1 | 32000 | 500－600 | 32000 | 400－500 | 25000 | 300－400 |  |
| R0．15 | 32000 | 500－600 | 32000 | 400－500 | 25000 | 300－400 | HRC45 $\downarrow$ HS0．06R |
| R0．2 | 32000 | 500－600 | 32000 | 400－500 | 25000 | 300－400 | Ps0．1R |
| R0．25 | 32000 | 600－700 | 32000 | 500－600 | 25000 | 400－500 |  |
| R0．3 | 32000 | 600－700 | 32000 | 500－600 | 25000 | 400－500 |  |
| R0．35 | 32000 | 700－800 | 32000 | 600－700 | 25000 | 500－600 |  |
| R0．4 | 32000 | 900－1000 | 32000 | 800－900 | 25000 | 600－700 | HRC45 $\uparrow$ H＜0．03R |
| R0．45 | 32000 | 1000－1100 | 32000 | 900－1000 | 25000 | 600－700 | $R=$ Radius $\quad P \leq 0.05 R$ |


| Material | Carbon Steels．Alloy Steels S45C，FC ，FCD ，SCM ，S50C ，SKS．．． |  | Alloy Steels ．Tool Steels SCr，SNCM ，SKD11，SKD61，NAK80．．． |  | Hardened Steels SKD11 |  | Depth Of Cut |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hardness | ～HRC30 |  | $\sim$ HRC50 |  | ～HRC60 |  |  |
| Diameter | speed（mim ${ }^{-1}$ ） | feed（mm／min） | speed（ mim $^{-1}$ ） | feed（mm／min） | speed（mim ${ }^{-1}$ ） | feed（mm／min） |  |
| 3 | 20000 | 2000 | 16000 | 1000 | 9000 | 500 |  |
| 4 | 19000 | 2000 | 12000 | 1300 | 6000 | 550 | HRC4S |
| $\cdots 5$ | 13000 | 1800 | 10000 | 1400 | 5000 | 500 |  |
| 응 6 | 10000 | 3000 | 8000 | 1500 | 4500 | 700 |  |
| 3 | 8000 | 3200 | 5000 | 1300 | 3500 | 600 |  |
| 言 10 | 7000 | 3000 | 4500 | 1200 | 3000 | 500 | $\square$ |
| － 12 | 5000 | 2000 | 4000 | 1100 | 2000 | 500 | W HRC45 $\uparrow$ |
| 16 | 4000 | 1800 | 3500 | 1000 | 1800 | 450 |  |
| 20 | 3500 | 1600 | 3000 | 1000 | 1300 | 450 | ${ }^{D} 6$ mm $\dagger ~ H=1 . S D ~ W=0.02 D$ |
|  | 20000 | 2000 | 20000 | 1200 | 16000 | 1200 |  |
|  | 16000 | 2000 | 16000 | 1200 | 12000 | 1300 |  |
|  | 13000 | 1800 | 13000 | 1100 | 10000 | 1400 | ${ }_{H \leq 02 D}$ |
|  | 10000 | 3000 | 10000 | 2100 | 8000 | 1500 | HRC45 $\downarrow$ D＝Diamezer |
|  | 8000 | 2900 | 8000 | 1800 | 6000 | 1400 |  |
|  | 7000 | 2800 | 6000 | 1700 | 5000 | 1300 |  |
|  | 5000 | 2300 | 5500 | 1700 | 4500 | 1200 |  |
|  | 3500 | 1800 | 4500 | 1800 | 3500 | 1200 |  |
|  | 3000 | 1400 | 3000 | 1500 | 2600 | 1100 |  |

## 

| Material | Carbon Steels ．Alloy Steels S45C ，FC ，FCD ，SCM ，S50C ，SKS．．． |  | Alloy Steels ．Tool Steels SCr，SNCM ，SKD11，SKD61，NAK80． |  | Hardened Steels SKD11 |  | Depth Of Cut |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hardness | ～HRC30 |  | $\sim$ HRC50 |  | ～HRC60 |  |  |
| Diameter | speed（mim ${ }^{-1}$ ） | feed（mm／min） | speed（mim ${ }^{-1}$ ） | feed（mm／min） | speed（mim¹） | feed（mm／min） | $\square$ |
| 6 | 4500 | 5800 | 3800 | 420 | 1600 | 300 | W HSTSD |
| 8 | 3500 | 820 | 2800 | 420 | 1000 | 300 | HRC45 $\downarrow$ W 0.1 D |
| 10 | 3000 | 820 | 1800 | 420 | 900 | 300 |  |
| 12 | 2000 | 820 | 1600 | 350 | 800 | 300 |  |
| 16 | 1500 | 650 | 1000 | 300 | 500 | 150 | $\square$ |
|  |  |  |  |  |  |  | $\begin{array}{ll} \overline{\mathrm{W}} & \begin{array}{l} H \leq I D \\ H R C 45 \uparrow \\ D=\text { Dianeter } \\ \mathrm{W} \leq 0.05 D \end{array} \end{array}$ |


| Material | Carbon Steels ．Alloy Steels S45C ，FC ，FCD ，SCM ，S50C ，SKS．．． |  | Alloy Steels．Tool Steels SCr，SNCM ，SKD11，SKD61，NAK80．．． |  | Hardened Steels SKD11 |  | Depth Of Cut |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hardness | ～HRC30 |  | $\sim$ HRC50 |  | ～HRC60 |  |  |
| Diameter | speed（mim ${ }^{-1}$ ） | feed（mm／min） | speed（mim ${ }^{-1}$ ） | feed（mm／min） | speed（mim ${ }^{-1}$ ） | feed（mm／min） |  |
| 0.20.3 | 40000 | 100－300 | 30000 | 80－250 | 15000 | $50-150$$50-200$ |  |
|  | 40000 | 100－350 | 30000 | 80－300 | 15000 |  |  |
| 0.4 | 40000 | 100－400 | 25000 | 80－350 | 10000 | 50－250 |  |
| 0.5 | 40000 | 100－500 | 25000 | 80－400 | 10000 | 50－250 |  |
| 0.6 | 38000 | 100－600 | 25000 | 80－500 | 8000 | 50－250 |  |
| 0.7 | 36000 | 100－700 | 20000 | 80－600 | 8000 | 50－250 |  |
| 0.8 | 34000 | 100－800 | 20000 | 80－700 | 8000 | 50－250 |  |
| 0.9 | 32000 | 100－1000 | 20000 | 80－800 | 8000 | 50－250 |  |
| 建議加工數據 $\qquad$ <br> Recommended cutting condition <br> －NRN ．NRX |  |  |  |  |  |  |  |
| Material | Carbon Steels ．Alloy Steels S45C ，FC ，FCD ，SCM ，S50C ，SKS．．． |  | Alloy Steels ．Tool Steels SCr，SNCM ，SKD11，SKD61 ，NAK80． |  | Hardened Steels SKD11 |  | Depth Of Cut |
| Hardness | $\sim$ HRC30 |  | $\sim$ HRC50 |  | $\sim$ HRC60 |  | $\lambda^{R}$ |
| Diameter | speed（mim ${ }^{-1}$ ） | feed（mm／min） | speed（mimi） | feed（mm／min） | speed（ mim $^{-1}$ ） | feed（mm／min） |  |
| 2 | 26000 | 1600 | 16500 | 1000 | 7500 | 300 |  |
| 3 | 19000 | 1800 | 12000 | 1200 | 5400 | 360 | －2R |
| 4 | 16000 | 3200 | 10000 | 1900 | 4800 | 480 | HRC45 $\downarrow$ Ps0．02R |
| 5 | 14000 | 3300 | 8000 | 2000 | 3800 | 500 |  |
| 6 | 12000 | 3600 | 7200 | 2200 | 3500 | 650 |  |
| 8 | 9600 | 4000 | 5600 | 2200 | 2700 | 750 |  |
| 10 | 7000 | 3400 | 4400 | 1700 | 2100 | 650 | W HSID |
| 12 | 6000 | 2800 | 3600 | 1400 | 1800 | 600 | HRC45 $\uparrow \quad W \leq 0.02 D$ |

## 

| Material | Carbon Steels．Alloy Steels S45C，FC ，FCD ，SCM ，S50C，SKS．．． |  | Alloy Steels．Tool Steels SCr，SNCM ，SKD11，SKD61，NAK80． |  | Hardened Steels SKD11 |  | Depth Of Cut |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hardness | ～HRC30 |  | $\sim$ HRC50 |  | ～HRC60 |  |  |
| Diameter | speed（mim ${ }^{-1}$ ） | feed（mm／min） | speed（mim ${ }^{-1}$ ） | feed（mm／min） | speed（mimi） | feed（mm／min） |  |
| 6 | 12000 | 3600 | 7200 | 2200 | 3500 | 650 |  |
| 8 | 9600 | 4000 | 5600 | 2200 | 2700 | 750 | 0．02R |
| 10 | 7000 | 3400 | 4400 | 1700 | 2100 | 650 | HRC45 $\downarrow$ PS0．02R |
| 12 | 6000 | 2800 | 3600 | 1400 | 1800 | 600 |  |
|  |  |  |  |  |  |  | HRC45 $\uparrow$ W $\leq 0.02 D$ <br> $D=D_{\text {iameter }} R=$ Comer $R$ |



| Material | Carbon Steels．Alloy Steels S45C ，FC ，FCD ，SCM ，S50C，SKS． |  | Alloy Steels ．Tool Steels SCr，SNCM，SKD11，SKD61，NAK80 |  | Hardened Steels SKD11 |  | Depth Of Cut |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hardness | $\sim$ HRC30 |  | $\sim$ HRC50 |  | ～HRC60 |  |  |
| Radius | speed（mim ${ }^{-1}$ ） | feed（mm／min） | speed（mim ${ }^{-1}$ ） | feed（mm／min） | speed（mim ${ }^{-1}$ ） | feed（mm／min） |  |
| R0．5 | 45000 | 2000 | 45000 | 1800 | 28000 | 1000 |  |
| R1 | 23000 | 2000 | 22000 | 1800 | 16000 | 900 | HRC45 $\downarrow$ HS0．04R |
| R1．5 | 16000 | 2000 | 15000 | 1800 | 11000 | 900 | 00．06R |
| R2 | 15000 | 2400 | 14000 | 2000 | 10000 | 1300 |  |
| R3 | 13000 | 3200 | 11000 | 2000 | 9000 | 1500 |  |
| R4 | 9000 | 2300 | 8000 | 1500 | 6200 | 1400 |  |
| R5 | 7500 | 1900 | 6500 | 1200 | 5200 | 900 | HRC45 $\uparrow$ Hz0．02R |
| R6 | 6300 | 1600 | 5500 | 1000 | 4300 | 800 | $R=$ Radius $\quad P \leq 0.03{ }^{\text {a }}$ |
| R8 | 4500 | 1200 | 3800 | 800 | 3300 | 700 |  |



| Material | Carbon Steels．Alloy Steels S45C ，FC ，FCD ，SCM ，S50C ，SKS．．． |  | Alloy Steels ．Tool Steels SCr，SNCM，SKD11，SKD61，NAK80 |  | Hardened Steels SKD11 |  | Depth Of Cut |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hardness | $\sim$ HRC30 |  | $\sim$ HRC50 |  | $\sim$ HRC60 |  |  |
| Radius | speed（mim ${ }^{-1}$ ） | feed（mm／min） | speed（mim ${ }^{-1}$ ） | feed（mm／min） | speed（mim¹） | feed（mm／min） |  |
| R2 | 15000 | 3000 | 14000 | 2600 | 10000 | 1700 |  |
| R3 | 13000 | 4000 | 11000 | 2600 | 9000 | 1900 | HRC45 $\downarrow$ HE0．04R |
| R4 | 9000 | 2900 | 8000 | 1900 | 6200 | 1800 | S0．06 |
| R5 | 7500 | 2400 | 6500 | 1500 | 5200 | 1100 |  |
| R6 | 6300 | 2100 | 5500 | 1300 | 4300 | 1000 |  |
| R8 | 4500 | 1500 | 3800 | 1000 | 3300 | 900 |  |
| R10 | 3700 | 1200 | 3200 | 750 | 2600 | 600 | HRC45 $\uparrow H \leq 0.02 R$ $R=$ Radius $\quad P \leq 0.03 R$ |

${ }^{\text {建議加工數㹉 }}$

| Material | Carbon Steels ．Alloy Steels S45C ，FC ，FCD ，SCM ，S50C，SKS． |  | Alloy Steels ．Tool Steels SCr，SNCM，SKD11，SKD61，NAK80 |  | Hardened Steels SKD11 |  | Depth Of Cut |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hardness | ～HRC30 |  | $\sim$ HRC50 |  | ～HRC60 |  |  |
| Radius | speed（mim ${ }^{-1}$ ） | feed（mm／min） | speed（mim ${ }^{-1}$ ） | feed（mm／min） | speed（mim ${ }^{-1}$ ） | feed（mm／min） |  |
| R0．5 | 45000 | 2000 | 45000 | 1800 | 28000 | 1000 |  |
| R1 | 23000 | 2000 | 22000 | 1800 | 16000 | 900 | HRC45 $\downarrow$ H $50.04 R$ |
| R1．5 | 16000 | 2000 | 15000 | 1800 | 11000 | 900 | Ps0．06R |
| R2 | 15000 | 2400 | 14000 | 2000 | 10000 | 1300 |  |
| R3 | 13000 | 3200 | 11000 | 2000 | 9000 | 1500 |  |
| R4 | 9000 | 2300 | 8000 | 1500 | 6200 | 1400 |  |
| R5 | 7500 | 1900 | 6500 | 1200 | 5200 | 900 | HRC45 $\uparrow$ HS0．02R |
| R6 | 6300 | 1600 | 5500 | 1000 | 4300 | 800 | $R=$ Radius $\quad P \leq 0.03 R$ |
| R8 | 4500 | 1200 | 3800 | 800 | 3300 | 700 |  |



建議加工數據

| Material | Carbon Steels．Alloy Steels S45C ，FC ，FCD ，SCM ，S50C，SKS．．． |  | Alloy Steels ．Tool Steels SCr ，SNCM ，SKD11，SKD61，NAK80． |  | Hardened Steels SKD11 |  | Depth Of Cut |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hardness | $\sim$ HRC30 |  | $\sim$ HRC50 |  | ～HRC60 |  |  |
| Radius | speed（mim ${ }^{-1}$ ） | feed（mm／min） | speed（mim ${ }^{-1}$ ） | feed（mm／min） | speed（mim ${ }^{-1}$ ） | feed（mm／min） |  |
| R0．10 | 32000 | 500－600 | 32000 | 400－500 | 25000 | 300－400 |  |
| R0．15 | 32000 | 500－600 | 32000 | 400－500 | 25000 | 300－400 | HRC45 $\downarrow$ HS0．06R |
| R0． 20 | 32000 | 500－600 | 32000 | 400－500 | 25000 | 300－400 | PSO．IR |
| R0．25 | 32000 | $600-700$ | 32000 | 500－600 | 25000 | 400－500 |  |
| R0．30 | 32000 | $600-700$ | 32000 | 500－600 | 25000 | 400－500 |  |
| R0．35 | 32000 | 700－800 | 32000 | 600－700 | 25000 | 500－600 |  |
| R0． 40 | 32000 | 900－1000 | 32000 | 800－900 | 25000 | 600－700 | HRC45 $\uparrow$ HS0．03R |
| R0．45 | 32000 | 1000－1100 | 32000 | 900－1000 | 25000 | 600－700 | $R=$ Radius $\quad P \leq 0.05 R$ |

0


| Material | Carbon Steels．Alloy Steels S45C ，FC ，FCD ，SCM ，S50C，SKS． |  | Alloy Steels ．Tool Steels SCr，SNCM ，SKD11，SKD61，NAK80． |  | Hardened Steels SKD11 |  | Depth Of Cut |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hardness | ～HRC30 |  | $\sim$ HRC50 |  | ～HRC60 |  |  |
| Diameter | speed（mim ${ }^{-1}$ ） | feed（mm／min） | speed（mim ${ }^{-1}$ ） | feed（mm／min） | speed（mim ${ }^{-1}$ ） | feed（mm／min） |  |
| 1 | 20000 | 80 | 15000 | 45 | 11000 | 30 |  |
| 1.5 | 13600 | 135 | 10000 | 60 | 9000 | 40 |  |
| 2 | 9600 | 150 | 8500 | 50 | 6000 | 45 |  |
| 3 | 6500 | 200 | 5800 | 75 | 4000 | 60 | ${ }_{\text {D }} \times 3 H=0.25 D$ |
| 4 | 5500 | 250 | 4000 | 80 | 3200 | 60 |  |
| 5 | 4500 | 300 | 3000 | 80 | 2500 | 70 | － |
| 6 | 4000 | 300 | 2500 | 80 | 2200 | 70 |  |
| 8 | 3500 | 350 | 2200 | 90 | 1700 | 70 |  |
| 10 | 3000 | 400 | 2000 | 90 | 1500 | 70 |  |
| 12 | 2500 | 400 | 1500 | 100 | 1000 | 70 | HRC45 ${ }_{\text {¢ }}{ }^{\text {¢ }}$ |
| 16 | 2000 | 400 | 1200 | 100 | 800 | 70 | $D>3 \quad H=0.1 D$ |

0

## 建議加工數據 $\bullet$ USA－4F

| Material | Carbon Steels．Alloy Steels S45C，FC ，FCD ，SCM ，S50C，SKS． |  | Alloy Steels ．Tool Steels SCr，SNCM ，SKD11，SKD61 ，NAK80．．． |  | $\begin{aligned} & \text { Hardened Steels } \\ & \text { SKD11 } \end{aligned}$ |  | Depth of Cut |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hardness | $\sim$ HRC30 |  | $\sim$ HRC50 |  | ～HRC60 |  |  |
| Diameter | speed（mim ${ }^{-1}$ ） | feed（mm／min） | speed（mim ${ }^{-1}$ ） | feed（mm／min） | speed（mimi） | feed（mm／min） | ［ H |
| 1 | 22000 | 400 | 18000 | 200 | 9000 | 140 | － |
| 1.5 | 12000 | 500 | 11000 | 280 | 5200 | 150 | W HETSD |
| 2 | 10000 | 550 | 10000 | 280 | 4600 | 170 | HRC45 W WSO．ID |
| 3 | 9000 | 600 | 5500 | 310 | 3500 | 220 |  |
| 4 | 6000 | 600 | 5000 | 400 | 2200 | 220 | ［ ${ }^{\text {r }}$ |
| 5 | 4800 | 750 | 4000 | 400 | 1700 | 240 |  |
| 6 | 4500 | 800 | 3800 | 420 | 1600 | 300 |  |
| 8 | 3500 | 820 | 2800 | 420 | 1000 | 300 |  |
| 10 | 3000 | 820 | 1800 | 420 | 900 | 300 |  |
| 12 | 2000 | 820 | 1600 | 350 | 800 | 300 |  |
| 16 | 1500 | 650 | 1000 | 300 | 500 | 150 |  |
| 20 | 1200 | 600 | 900 | 300 | 400 | 150 |  |


| Material <br> Hardness | Carbon Steels ．Alloy Steels S45C ，FC ，FCD ，SCM ，S50C ，SKS．．． |  | Alloy Steels ．Tool Steels SCr ，SNCM ，SKD11，SKD61 ，NAK80．．． |  | Hardened Steels SKD11 |  | Depth of Cut |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\sim$ HRC30 |  | $\sim$ HRC50 |  | ～HRC60 |  |  |
| Diameter | speed（mim ${ }^{-1}$ ） | feed（mm／min） | speed（mim） | feed（mm／min） | speed（ $\mathrm{mim}^{-1}$ ）9000 | feed（mm／min） |  |
| 1 | 22000 | 400 | 18000 | 200 |  | 140 |  |
| 1.5 | 12000 | 500 | 11000 | 280 | 5200 | 150 |  |
| 2 | 10000 | 550 | 10000 | 280 | 4600 | 170 |  |
| 3 | 9000 | 600 | 5500 | 310 | 3500 | 220 |  |
| 4 | 6000 | 600 | 5000 | 400 | 2200 | 220 | J H |
| 5 | 4800 | 750 | 4000 | 400 | 1700 | 240 |  |
| － 6 | 4500 | 800 | 3800 | 420 | 1600 | 300 | w |
| 8 | 3500 | 820 | 2800 | 420 | 1000 | 300 | $\stackrel{\text { w }}{\substack{\text { w } \\ \text { c } \\ \text { ¢ }}}$ |
| 10 | 3000 | 820 | 1800 | 420 | 900 | 300 | $\begin{aligned} & \text { HRC45 } \begin{array}{l} \text { D=Diancerer } \\ W \leq 0.05 D \end{array} \end{aligned}$ |
| 12 | 2000 | 820 | 1600 | 350 | 800 | 300 |  |
| 16 | 1500 | 650 | 1000 | 300 | 500 | 150 |  |
| 20 | 1200 | 600 | 900 | 300 | 400 | 150 |  |
| 建議加工數據 $\qquad$ <br> Recommended cutting condition <br> －USQ |  |  |  |  |  |  |  |
| Material | Carbon Steels ．Alloy Steels S45C，FC ，FCD ，SCM ，S50C，SKS．．． |  | Alloy Steels．Tool Steels SCr，SNCM，SKD11，SKD61，NAK80． |  | Hardened Steels SKD11 |  | Depth Of Cut |
| Hardness | $\sim$ HRC30 |  | $\sim$ HRC50 |  | $\sim$ HRC60 |  |  |
| Diameter | speed（ mim $^{-1}$ ） | feed（mm／min） | speed（mimi） | feed（mm／min） | speed（ mim $^{-1}$ ） | feed（mm／min） |  |
| 11.5 | 22000 | 400 | 18000 | 200 | 9000 | 140 |  |
|  | 12000 | 500 | 11000 | 280 | 5200 | 150 |  |
| 2 | 10000 | 550 | 10000 | 280 | 4600 | 170 |  |
| 3 | 9000 | 600 | 5500 | 310 | 3500 | 220 |  |
| 4 | 6000 | 600 | 5000 | 400 | 2200 | 220 | IH |
| 5 | 4800 | 750 | 4000 | 400 | 1700 | 240 |  |
| 6 | 4500 | 800 | 3800 | 420 | 1600 | 300 | HRC45 $\uparrow H \leq I D$ <br> $D=$ Diameter $W \leq 0.05 D$ |
| 10 | 3500 | 820 | 2800 | 420 | 1000 | 300 |  |
|  | 3000 | 820 | 1800 | 420 | 900 | 300 |  |
| 10 12 | 2000 | 820 | 1600 | 350 | 800 | 300 |  |
| 16 | 1500 | 650 | 1000 | 300 | 500 | 150 |  |
| 20 | 1200 | 600 | 900 300 |  | 400 | 150 |  |
| 建議加工數據 $\qquad$ <br> Recommended cutting condition <br> －USM |  |  |  |  |  |  |  |
| Material | Carbon Steels ．Alloy Steels S45C ，FC ，FCD ，SCM ，S50C ，SKS．． |  | Alloy Steels ．Tool Steels SCr，SNCM，SKD11，SKD61，NAK80．． |  | Hardened Steels SKD11 |  | Depth of Cut |
| Hardness | $\sim$ HRC30 |  | $\sim$ HRC50 |  | $\sim$ HRC60 |  |  |
| Diameter | speed（ mim $^{-1}$ ） | feed（mm／min） | speed（mimi） | feed（mm／min） | speed（ mim $^{-1}$ ） | feed（mm／min） |  |
| 0.2 | 40000 | 100－300 | 30000 | 80－250 | 15000 | 50－150 |  |
| 0.3 | 40000 | 100－350 | 30000 | 80－300 | 15000 | 50－200 | $H R C 45 \downarrow \underset{\substack{H \leq 0.1 D \\ D \leq I D}}{ }$ |
| 0.4 | 40000 | 100－400 | 25000 | 80－350 | 10000 | 50－250 |  |
| 0.5 | 40000 | 100－500 | 25000 | 80－400 | 10000 | 50－250 |  |
| 0.6 | 38000 | 100－600 | 25000 | 80－500 | 8000 | 50－250 |  |
| 0.7 | 36000 | 100－700 | 20000 | 80－600 | 8000 | 50－250 |  |
| 0.8 | 34000 | 100－800 | 20000 | 80－700 | 8000 | 50－250 |  |
| 0.9 | 32000 | 100－1000 | 20000 | 80－800 | 8000 | 50－250 | $\begin{aligned} & \text { HRC45 } \uparrow \\ & D \leq=0.02 D \\ & D \text { Dianeter } \\ & D \leq 1 D \end{aligned}$ |



| Material | Carbon Steels. Alloy Steels S45C, FC , FCD , SCM , S50C, SKS... |  | Alloy Steels. Tool Steels SCr, SNCM, SKD11, SKD61, NAK80. |  | Hardened Steels SKD11 |  | Depth Of Cut |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hardness | $\sim$ HRC30 |  | $\sim$ HRC50 |  | ~HRC60 |  |  |
| Diameter | speed ( mim $^{-1}$ ) | feed (mm / min) | speed (mimi) | feed (mm / min) | speed ( $\mathrm{mim}^{-1}$ ) | feed (mm / min) |  |
| 3 | 20000 | 2000 | 16000 | 1000 | 9000 | 500 |  |
| 4 | 19000 | 2000 | 12000 | 1300 | 6000 | 550 | $\checkmark$ |
| 5 | 13000 | 1800 | 10000 | 1400 | 5000 | 500 | $D 6 \mathrm{~mm} \downarrow H=1.5 \mathrm{D}$ $D 6=0.02 \mathrm{D}$ $\mathrm{mm} \uparrow H=1.5 D \quad W=0.05 D$ |
| 흥 | 10000 | 3000 | 8000 | 1500 | 4500 | 700 |  |
| 3 | 8000 | 3200 | 5000 | 1300 | 3500 | 600 |  |
| 考 10 | 7000 | 3000 | 4500 | 1200 | 3000 | 500 | - |
| - 12 | 5000 | 2000 | 4000 | 1100 | 2000 | 500 | W HRC45 $\uparrow$ |
| 16 | 4000 | 1800 | 3500 | 1000 | 1800 | 450 | $D 6 m m \downarrow t=I S D \quad W=0.01 D$ |
| 20 | 3500 | 1600 | 3000 | 1000 | 1300 | 450 | $D 6$ ma $\dagger ~ H=1 . S D W=0.02 D$ |
|  | 20000 | 2000 | 20000 | 1200 | 16000 | 1200 |  |
|  | 16000 | 2000 | 16000 | 1200 | 12000 | 1300 |  |
|  | 13000 | 1800 | 13000 | 1100 | 10000 | 1400 | Hso 2 D |
|  | 10000 | 3000 | 10000 | 2100 | 8000 | 1500 | HRC4S D=Diameter |
|  | 8000 | 2900 | 8000 | 1800 | 6000 | 1400 |  |
|  | 7000 | 2800 | 6000 | 1700 | 5000 | 1300 |  |
|  | 5000 | 2300 | 5500 | 1700 | 4500 | 1200 |  |
|  | 3500 | 1800 | 4500 | 1800 | 3500 | 1200 |  |
|  | 3000 | 1400 | 3000 | 1500 | 2600 | 1100 |  |

0

## 





| Material | Carbon Steels．Alloy Steels S45C，FC，FCD ，SCM ，S50C，SKS． |  | Alloy Steels ．Tool Steels SCr ，SNCM，SKD11，SKD61，NAK80 |  | Hardened Steels SKD11 |  | Depth Of Cut |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hardness | ～HRC30 |  | $\sim$ HRC50 |  | ～HRC60 |  |  |
| Diameter | speed（mim ${ }^{-1}$ ） | feed（mm／min） | speed（mimi） | feed（mm／min） | speed（mim ${ }^{-1}$ ） | feed（mm／min） |  |
| 3 | 7600 | 180 | 4800 | 120 | 2900 | 50 |  |
| 4 | 6500 | 260 | 4000 | 160 | 2500 | 55 | HRC45 $\downarrow$ HSO 3 S |
| 5 | 5500 | 270 | 3200 | 160 | 2000 | 60 |  |
| 6 | 4800 | 300 | 2900 | 170 | 1800 | 70 |  |
| 8 | 3700 | 325 | 2200 | 170 | 1500 | 85 |  |
| 10 | 2900 | 280 | 1700 | 140 | 1100 | 70 |  |
| 12 | 2400 | 230 | 1400 | 120 | 1000 | 65 | HRC45 $\uparrow$ HS0．15D |
| 16 | 1800 | 170 | 1100 | 90 | 700 | 45 | $D=$ Diameter |


| Material |  | Alloy Steels ．Tool Steels ．Hardened Steels <br> S45C ，SCM ，S50C ，SKS ，SCr ，SNCM ，SKD11，SKD61 ，NAK80 |  |  | Depth Of Cut |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Diameter | Effective Length | speed（ $\mathrm{mim}^{-1}$ ） | feed（mm／min） | depth of cut H （mm） |  |
| 1 | 4 | 30000 | 2200 | 0.15 |  |
|  | 6 | 30000 | 2200 | 0.12 |  |
|  | 8 | 30000 | 2200 | 0.12 |  |
|  | 10 | 30000 | 2200 | 0.12 |  |
| 1.5 | 4 | 25000 | 1800 | 0.20 |  |
|  | 6 | 25000 | 1800 | 0.18 |  |
|  | 8 | 25000 | 1800 | 0.15 |  |
|  | 10 | 25000 | 1800 | 0.15 |  |
|  | 12 | 25000 | 1800 | 0.15 |  |
| 2 | 8 | 20000 | 1500 | 0.30 |  |
|  | 10 | 20000 | 1500 | 0.30 |  |
|  | 12 | 20000 | 1500 | 0.25 |  |
|  | 16 | 20000 | 1500 | 0.25 |  |
| 3 | 8 | 12000 | 900 | 0.40 |  |
|  | 12 | 12000 | 900 | 0.40 |  |
|  | 16 | 12000 | 900 | 0.30 |  |
|  | 20 | 12000 | 900 | 0.30 |  |

## 

| Material <br> Hardness | Carbon Steels．Alloy Steels S45C，FC ，FCD ，SCM ，S50C，SKS．．． |  | Alloy Steels ．Tool Steels SCr，SNCM ，SKD11，SKD61 ，NAK80．．． |  | Hardened Steels SKD11 |  | Depth Of Cut |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\sim$ HRC30 |  | $\sim$ HRC50 |  | $\sim$ HRC60 |  |  |
| Diameter | speed（mimin ${ }^{-1}$ | feed（mm／min） | speed（mim ${ }^{-1}$ ） | feed（mm／min） | speed（mim ${ }^{-1}$ ） | feed（mm／min） |  |
| 6 | 12000 | 3600 | 7200 | 2200 | 3500 | 650 |  |
| 8 | 9600 | 4000 | 5600 | 2200 | 2700 | 750 | H50．02R |
| 10 | 7000 | 3400 | 4400 | 1700 | 2100 | 650 | PS0．02R |
| 12 | 6000 | 2800 | 3600 | 1400 | 1800 | 600 |  |


| Material | Carbon Steels．Alloy Steels S45C，FC ，FCD ，SCM ，S50C ，SKS．．． |  | Alloy Steels ．Tool Steels SCr ，SNCM ，SKD11，SKD61 ，NAK80． |  | Hardened Steels SKD11 |  | Depth Of Cut |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hardness | $\sim$ HRC30 |  | ～HRC50 |  | ～HRC60 |  |  |
| RADIUS | speed（mimin ${ }^{-1}$ | feed（mm／min） | speed（ mim $^{-1}$ ） | feed（mm／min） | speed（mimin ${ }^{-1}$ | feed（mm／min） |  |
| R0．5 | 45000 | 800 | 35000 | 600 | 20000 | 200 |  |
| R1 | 23000 | 800 | 18000 | 600 | 10000 | 200 |  |
| R1．5 | 16000 | 1000 | 12000 | 600 | 6500 | 200 | HRC45 \ HS0．05R |
| R2 | 12000 | 1000 | 9500 | 700 | 5000 | 300 |  |
| R3 | 8000 | 1100 | 6000 | 700 | 3500 | 300 |  |
| R4 | 6000 | 1200 | 5000 | 800 | 2500 | 350 | H． |
| R5 | 5000 | 1100 | 4000 | 800 | 2000 | 350 |  |
| R6 | 4000 | 1000 | 3000 | 700 | 1500 | 300 | HRC45 $\uparrow$ HS0．04R |
| R8 | 3000 | 1000 | 2000 | 700 | 1000 | 300 | $R=$ Radius $\quad P \leq 0.06 R$ |

－$\frac{\text { 建議加工數據 }}{\text { Recommended cuting condition }} \bullet$ BA－4F

| Material | Carbon Steels．Alloy Steels S45C，FC ，FCD ，SCM ，S50C，SKS．．． |  | Alloy Steels ．Tool Steels SCr，SNCM，SKD11，SKD61，NAK80． |  | Hardened Steels SKD11 |  | Depth of Cut |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hardness | ～HRC30 |  | $\sim$ HRC50 |  | ～HRC60 |  |  |
| RAdius | speed（mim ${ }^{-1}$ ） | feed（mm／min） | speed（mimin） | feed（mm／min） | speed（mimin） | feed（mm／min） |  |
| R2 | 12000 | 1200 | 9500 | 900 | 5000 | 400 |  |
| R3 | 8000 | 1400 | 6000 | 900 | 3500 | 500 |  |
| R4 | 6000 | 1600 | 5000 | 1000 | 2500 | 600 | HRC45 $\downarrow$ H $50.15 R$ |
| R5 | 5000 | 1400 | 4000 | 1000 | 2000 | 600 |  |
| R6 | 4000 | 1200 | 3000 | 900 | 1500 | 500 |  |
| R8 | 3000 | 1200 | 2500 | 900 | 1000 | 500 |  |
| R10 | 2500 | 1000 | 2000 | 600 | 900 | 300 |  |
|  |  |  |  |  |  |  | $\begin{array}{cc}H R C 45 \uparrow & H \leq 0.05 R \\ R=\text { Radius } & P \leq 0.02 R\end{array}$ |

## 

| Material | Carbon Steels ．Alloy Steels S45C ，FC ，FCD ，SCM ，S50C，SKS．．． |  | Alloy Steels ．Tool Steels SCr，SNCM，SKD11，SKD61，NAK80 |  | Hardened Steels SKD11 |  | Depth Of Cut |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hardness | ～HRC30 |  | $\sim$ HRC50 |  | $\sim$ HRC60 |  |  |
| Radius | speed（mim ${ }^{-1}$ ） | feed（mm／min） | speed（mim ${ }^{-1}$ ） | feed（mm／min） | speed（mim ${ }^{-1}$ ） | feed（mm／min） |  |
| R0．5 | 45000 | 800 | 35000 | 600 | 20000 | 200 |  |
| R1 | 23000 | 800 | 18000 | 600 | 10000 | 200 | HRC45 $\downarrow$ H 0005 S |
| R1．5 | 16000 | 1000 | 12000 | 600 | 6500 | 200 |  |
| R2 | 12000 | 1000 | 9500 | 700 | 5000 | 300 |  |
| R3 | 8000 | 1100 | 6000 | 700 | 3500 | 300 |  |
| R4 | 6000 | 1200 | 5000 | 800 | 2500 | 350 |  |
| R5 | 5000 | 1100 | 4000 | 800 | 2000 | 350 |  |
| R6 | 4000 | 1000 | 3000 | 700 | 1500 | 300 | R＝Radius $\quad P \leq 0.06 \mathrm{R}$ |
| R8 | 3000 | 1000 | 2000 | 700 | 1000 | 300 |  |


| Material | Carbon Steels．Alloy Steels S45C，FC，FCD ，SCM，S50C，SKS． |  | Alloy Steels．Tool Steels SCr，SNCM ，SKD11，SKD61 ，NAK80．．． |  | Hardened Steels SKD11 |  | Depth Of Cut |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hardness | ～HRC30 |  | $\sim$ HRC50 |  | ～HRC60 |  |  |
| Radius | speed（mim ${ }^{-1}$ ） | feed（mm／min） | speed（ mim $^{-1}$ ） | feed（mm／min） | speed（mim ${ }^{-1}$ ） | feed（mm／min） |  |
| R0．10 | 32000 | 500－600 | 32000 | 400－500 | 25000 | 300－400 |  |
| R0．15 | 32000 | 500－600 | 32000 | 400－500 | 25000 | 300－400 | HRC45 $\downarrow$ H006R |
| R0．20 | 32000 | 500－600 | 32000 | 400－500 | 25000 | 300－400 | HRC4 \ ELOOOR |
| R0． 25 | 32000 | $600-700$ | 32000 | 500－600 | 25000 | 400－500 |  |
| R0．30 | 32000 | 600－700 | 32000 | 500－600 | 25000 | 400－500 |  |
| R0．35 | 32000 | 700－800 | 32000 | 600－700 | 25000 | 500－600 |  |
| R0．40 | 32000 | 900－1000 | 32000 | 800－900 | 25000 | 600－700 |  |
| R0．45 | 32000 | 1000－1100 | 32000 | 900－1000 | 25000 | 600－700 | $\underset{R=\text { Radius }}{ }$ | $\frac{\text { 建識加工數據 }}{\text { Recommenter cuting condition }}$



| Material |  | Alloy Steels．Tool Steels．Hardened Steels S45C ，SCM ，S50C ，SKS ，SCr ，SNCM ，SKD11，SKD61，NAK80 |  |  | Depth of Cut |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Radius | Effective Length | speed（ $\mathrm{mim}^{-1}$ ） | feed（mm／min） | depth of cut $\mathrm{H}(\mathrm{mm})$ | R＜1 P＜0．IR |
| R0．5 | 6 | 20000－32000 | $300-750$ | 0.04 |  |
|  | 8 | 20000－32000 | 300－750 | 0.03 |  |
|  | 10 | 20000－32000 | $300-750$ | 0.025 |  |
|  | 12 | 20000－32000 | $300-750$ | 0.015 |  |
| R0．75 | 8 | 18000－20000 | 350－550 | 0.07 |  |
|  | 12 | 18000－20000 | 350－550 | 0.04 | $R=$ Radius |
|  | 16 | 18000－20000 | 350－550 | 0.03 |  |
|  | 20 | 18000－20000 | $350-550$ | 0.02 |  |
| R1．0 | 8 | 12000－17000 | 500 －900 | 0.1 |  |
|  | 12 | 12000－17000 | $500-900$ | 0.1 |  |
|  | 16 | 12000－17000 | $500-900$ | 0.07 |  |
|  | 20 | 12000－17000 | $500-900$ | 0.04 |  |
| R1．5 | 8 | 8000－11000 | $500-700$ | 0.17 |  |
|  | 10 | 8000－11000 | 500－700 | 0.15 |  |
|  | 16 | 8000－11000 | $500-700$ | 0.14 |  |
|  | 20 | $8000-11000$ | $500-700$ | 0.12 |  |
|  | 25 | 8000－11000 | $500-700$ | 0.1 |  |
| R2．0 | 10 | 5000－8000 | $400-600$ | 0.18 |  |
|  | 15 | 5000－8000 | $400-600$ | 0.17 |  |
|  | 20 | 5000－8000 | $400-600$ | 0.16 |  |
|  | 25 | 5000－8000 | 400－600 | 0.15 |  |
|  | 30 | 5000－8000 | 400－600 | 0.14 |  |


| Material <br> Hardness | Carbon Steels ．Alloy Steels S45C ，FC ，FCD ，SCM，S50C ，SKS．．． |  | Alloy Steels ．Tool Steels SCr ，SNCM ，SKD11，SKD61 ，NAK80．．． |  | Hardened Steels SKD11 |  | Depth of Cut |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ～HRC30 |  | $\sim$ HRC50 |  | $\sim$ HRC60 |  |  |
| Diameter | speed（mimi） | feed（mm／min） | speed（ $\mathrm{mim}^{-1}$ ） | feed（mm／min） | speed（ $\mathrm{mim}^{-1}$ ） | feed（mm／min） |  |
| 1 | 20000 | 80 | 15000 | 4560 | 11000 | 30 |  |
| 1.5 | 13600 | 135 | 10000 |  | 9000 | 40 | HRC45 $\downarrow$ <br> $D<3 H=0.15 D$ <br> $D>3 H=0.25 D$ |
| 2 | 9600 | 150 | 8500 | 50 | 6000 | 45 |  |
| 3 | 6500 | 200 | 5800 | 75 | 4000 | 60 |  |
| 4 | 5500 | 250 | 4000 | 80 | 3200 | 60 | － |
| 5 | 4500 | 300 | 3000 | 80 | 2500 | 70 |  |
| 6 | 4000 | 300 | 2500 | 80 | 2200 | 70 |  |
| 8 | 3500 | 350 | 2200 | 90 | 1700 | 70 |  |
| 10 | 3000 | 400 | 2000 | 90 | 1500 | 70 | HRC45 $\uparrow$ |
| 12 | 2500 | 400 | 1500 | 100 | 1000 | 70 | $D<3 H=0.05 D$ $D>3 H=0.1$ |
| 16 | 2000 | 400 | 1200 | 100 | 800 | 70 | D＞3 $D=$ Diameter |
|  |  |  |  |  |  |  |  |
| Material | Carbon Steels．Alloy Steels S45C ，FC ，FCD ，SCM ，S50C ，SKS．． |  | Alloy Steels ．Tool Steels SCr ，SNCM，SKD11，SKD61，NAK80．． |  | Hardened Steels SKD11 |  | Depth Of Cut |
| Hardness | $\sim$ HRC30 |  | $\sim$ HRC50 |  | ～HRC60 |  |  |
| Diameter | speed（mimin） | feed（mm／min） | speed（ mim $^{-1}$ ） | feed（mm／min） | speed（mimil） | feed（mm／min） |  |
| 3 | 8000 | 550（300） | 5500 | 300（100） | 3500 | 200（95） |  |
| 4 | 6500 | 550（300） | 4500 | 300（100） | 2200 | 200（95） | $\underbrace{H-S D}_{D \leq I D}$ |
| 5 | 5000 | 800（400） | 3600 | 350（120） | 1800 | 210（100） |  |
| 6 | 4000 | 800（400） | 2800 | 350（120） | 1500 | 210（110） | HRC45 $\downarrow$ |
| 8 | 3500 | 800（400） | 2600 | 350（120） | 1300 | 210（100） |  |
| 10 | 2500 | 800（400） | 2000 | 350（120） | 1100 | 210（100） | ${ }^{+}$ |
| 12 | 1800 | 750（350） | 1500 | 350（120） | 700 | 210（100） | －${ }_{\text {a }}$$H \leq 1 D$ <br> $W \leq 0.05$ |
| 16 | 1400 | 700（300） | 1000 | 300（100） | 500 （）：Grooving |  | WS |
|  |  |  |  |  |  |  |  |
| $\bigcirc \frac{\substack{\text { 侓議加工數據 }}}{\text { Recommended cutting condition }} \bullet \text { SA-4F }$ |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
| Material | Carbon Steels ．Alloy Steels S45C，FC，FCD ，SCM ，S50C，SKS．．． |  | Alloy Steels ．Tool Steels SCr，SNCM ，SKD11，SKD61 ，NAK80．．． |  | Hardened Steels SKD11 |  | Depth Of Cut |
| Hardness | $\sim$ HRC30 |  | $\sim$ HRC50 |  | －HRC60 |  |  |
| Diameter | speed（mimi） | feed（mm／min） | speed（mimi ${ }^{-1}$ ） | feed（mm／min） | speed（mim） | feed（mm／min） |  |
| 1 | 22000 | 400 | 18000 | 200 | 9000 | 140 |  |
| 1.5 | 12000 | 500 | 11000 | 280 | 5200 | 150 |  |
| 2 | 10000 | 550 | 10000 | 280 | 4600 | 170 |  |
| 3 | 9000 | 600 | 5500 | 310 | 3500 | 220 |  |
| 4 | 6000 | 600 | 5000 | 400 | 2200 | 220 | IH |
| 5 | 4800 | 750 | 4000 | 400 | 1700 | 240 | － |
| 6 | 4500 | 800 | 3800 | 420 | 1600 | 300 | w |
| 8 | 3500 | 820 | 2800 | 420 | 1000 | 300 | HRC45 $\uparrow$ H $\leq 1 D^{\text {d }}$ |
| 10 | 3000 | 820 | 1800 | 420 | 900 | 300 | ${ }_{D=\text { Diameter }} \mathrm{W} \leq 0.05 D$ |
| 12 | 2000 | 820 | 1600 | 350 | 800 | 300 |  |
| 16 | 1500 | 650 | 1000 | 300 | 500 | 150 |  |
| 20 | 1200 | 600 | 900 | 300 | 400 | 150 |  |



| Material | Carbon Steels ．Alloy Steels S45C，FC，FCD ，SCM ，S50C，SKS． |  | Alloy Steels．Tool Steels SCr，SNCM，SKD11，SKD61，NAK80． |  | Hardened SteelsSKD11 |  | Depth Of Cut |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hardness | ～HRC30 |  | $\sim$ HRC50 |  | ～HRC60 |  |  |
| Diameter | speed（ $\mathrm{mim}^{-1}$ ） | feed（mm／min） | speed（mim ${ }^{-1}$ ） | feed（mm／min） | speed（mim ${ }^{-1}$ ） | feed（mm／min） | H |
| 6 | 4000 | 300 | 2500 | 80 | 2200 | 70 |  |
| 8 | 3500 | 350 | 2200 | 90 | 1700 | 70 | HRC45 $\downarrow$ |
| 10 | 3000 | 400 | 2000 | 90 | 1500 | 70 | $D<3 \quad H=0.15 D$ |
| 12 | 2500 | 400 | 1500 | 100 | 1000 | 70 |  |
| 16 | 2000 | 400 | 1200 | 100 | 800 | 70 |  |
|  |  |  |  |  |  |  | HRC45 $\uparrow$ <br> $D<3 H=0.05 D$ <br> $D>3 H=0.1 D$ <br> $D=$ Diameter |

$\underbrace{\text { Recommented }}_{\text {建識加工數據 }}$（

| Material | Carbon Steels．Alloy Steels S45C，FC，FCD ，SCM ，S50C，SKS． |  | Alloy Steels ．Tool Steels SCr，SNCM，SKD11，SKD61，NAK80 |  | Hardened Steels SKD11 |  | Depth Of Cut |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hardness | ～HRC30 |  | ～HRC50 |  | ～HRC60 |  |  |
| Diameter | speed（mim－1） | feed（mm／min） | speed（mim ${ }^{-1}$ ） | feed（mm／min） | speed（mim ${ }^{-1}$ ） | feed（mm／min） | ［ ${ }^{\text {r }}$ |
| 6 | 4500 | 800 | 3800 | 420 | 1600 | 300 | － |
| 8 | 3500 | 820 | 2800 | 420 | 1000 | 300 | W ${ }_{\text {W }}$ ISD |
| 10 | 3000 | 820 | 1800 | 420 | 900 | 300 | HRC45 $\downarrow$ WS 0.1 D |
| 12 | 2000 | 820 | 1600 | 350 | 800 | 300 |  |
| 16 | 1500 | 650 | 1000 | 300 | 500 | 150 |  |
| 20 | 1200 | 600 | 900 | 300 | 400 | 150 | $\square$ |
|  |  |  |  |  |  |  | $\begin{array}{ll}  \\ H R C 45 \uparrow & H \leq 1 D \\ D=\text { Diameter } & W \leq 0.05 D \end{array}$ |


| Material | Carbon Steels ．Alloy Steels S45C，FC，FCD，SCM，S50C，SKS．．． |  | Alloy Steels ．Tool Steels SCr，SNCM ，SKD11，SKD61，NAK80．．． |  | Hardened Steels SKD11 |  | Depth Of Cut |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hardness | $\sim$ HRC30 |  | $\sim$ HRC50 |  | ～HRC60 |  |  |
| Diameter | speed（mim ${ }^{-1}$ ） | feed（mm／min） | speed（mim ${ }^{-1}$ ） | feed（mm／min） | speed（ $\mathrm{mim}^{-1}$ ） | feed（mm／min） |  |
| 2 | 3000 | 50 | 2500 | 40 | 1000 | 15 | － |
| 3 | 2500 | 60 | 2000 | 50 | 800 | 20 | W ${ }_{\text {c } 25 D}$ |
| 4 | 2000 | 80 | 1700 | 70 | 700 | 30 | HRC45 W WSo．${ }^{\text {S }}$ |
| 5 | 1800 | 110 | 1500 | 85 | 600 | 40 |  |
| 6 | 1500 | 110 | 1400 | 75 | 550 | 50 |  |
| 8 | 1300 | 110 | 1100 | 75 | 450 | 50 | － |
| 10 | 1000 | 110 | 800 | 75 | 300 | 50 | ${ }^{\mathbf{W}}{ }^{\text {－}}$ |
| 12 | 900 | 110 | 700 | 75 | 250 | 40 | $\begin{aligned} & H R C 45 \uparrow H \leq D \\ & D=D \text { Dianeter } W \leq 0.02 D \end{aligned}$ |
| 16 | 800 | 95 | 500 | 70 | 150 | 20 |  |
| 20 | 500 | 80 | 400 | 60 | 120 | 20 |  |



| Material | Carbon Steels ．Alloy Steels S45C，FC，FCD ，SCM，S50C，SKS．．． |  | Alloy Steels．Tool Steels SCr，SNCM ，SKD11，SKD61，NAK80．．． |  | Hardened Steels SKD11 |  | Depth Of Cut |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hardness | ～HRC30 |  | $\sim$ HRC50 |  | ～HRC60 |  |  |
| Diameter | speed（mim ${ }^{-1}$ ） | feed（mm／min） | speed（mim ${ }^{-1}$ ） | feed（mm／min） | speed（mim ${ }^{-1}$ ） | feed（mm／min） |  |
| 0.4 | 40000 | 100－400 | 25000 | 80－350 | 10000 | 50－250 |  |
| 0.5 | 40000 | 100－500 | 25000 | 80－400 | 10000 | 50－250 | Hoid |
| 0.6 | 38000 | 100－600 | 25000 | 80－500 | 8000 | 50－250 | HRC45 \ DSID |
| 0.7 | 36000 | 100－700 | 20000 | 80－600 | 8000 | 50－250 |  |
| 0.8 | 34000 | 100－800 | 20000 | 80－700 | 8000 | 50－250 |  |
| 0.9 | 32000 | 100－1000 | 20000 | 80－800 | 8000 | 50－250 |  |
|  |  |  |  |  |  |  | HRC45 $\uparrow_{H \leq 0.02 D}$ <br> $D=$ Diameter $D \leq I D$ |




0
建議加工數據

| Material | Carbon Steels ．Alloy Steels S45C，FC ，FCD ，SCM ，S50C，SKS． |  | Alloy Steels．Tool Steels SCr，SNCM，SK011，SK061，NAK80． |  | Hardened Steels SKD11 |  | Depth of Cut |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hardness | $\sim$ HRC30 |  | $\sim$ HRC50 |  | ～HRC60 |  |  |
| Diameter | speed（mim ${ }^{-1}$ ） | feed（mm／min） | speed（mimin ${ }^{-1}$ | feed（mm／min） | speed（mim¹） | feed（mm／min） |  |
| 3 | 7600 | 180 | 4800 | 120 | 2900 | 50 |  |
| 4 | 6500 | 260 | 4000 | 160 | 2500 | 55 | HRC45 $\downarrow$ H 50.3 D |
| 5 | 5500 | 270 | 3200 | 160 | 2000 | 60 |  |
| 6 | 4800 | 300 | 2900 | 170 | 1800 | 70 |  |
| 8 | 3700 | 325 | 2200 | 170 | 1500 | 85 |  |
| 10 | 2900 | 280 | 1700 | 140 | 1100 | 70 |  |
| 12 | 2400 | 230 | 1400 | 120 | 1000 | 65 | HRC45 $\uparrow$ HS0．15D |
| 16 | 1800 | 170 | 1100 | 90 | 700 | 45 | D＝Diameter |

0
建議加工數据
（4ecomm
Material
Carbon Steels ．Alloy Steels
S45C ，FC ，FCD ，SCM ，S50C ，SKS
Alloy Steels．Tool Steels
SCr，SNCM．SKD11，SKD61，NAK80 $\qquad$ Hardened Steels
SKD11 SKD11
$\sim$ HRC60 RC60 Hardness $\qquad$ speed（ mim $^{-1}$ ）fee $\qquad$ speed（mim ${ }^{-1}$ ） $\left.\right|^{\text {feed }(\mathrm{mm} / \mathrm{min})}{ }^{120}$

建議加工數據
Recommended cutting condition－SR－3F


| Material |  | Carbon Steels ．Alloy Steels S45C ，FC ，FCD ，SCM，S50C，SKS．．． |  | Alloy Steels ．Tool Steels SCr ，SNCM，SKD11，SKD61，NAK80 |  | Hardened Steels SKD11 |  | Depth Of Cut |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hardness |  | ～HRC30 |  | $\sim$ HRC50 |  | ～HRC60 |  | Side Milling |
| Diameter |  | speed（mim ${ }^{-1}$ ） | feed（mm／min） | speed（mimi ${ }^{-1}$ ） | feed（mm／min） | speed（mim ${ }^{-1}$ ） | feed（mm／min） | ${ }^{\mathrm{H}} \mathrm{HSLISD}^{\text {d }}$ |
|  | 6 | 5500 | 550 | 3000 | 310 | 1150 | 120 | HRC45＋ |
|  | 8 | 4600 | 550 | 2500 | 310 | 920 | 120 | W |
|  | 10 | 3700 | 550 | 2000 | 310 | 730 | 120 | н |
|  | 12 | 3000 | 500 | 1700 | 310 | 600 | 120 | WSO．0SD |
|  | 16 | 2300 | 520 | 1200 | 310 | 460 | 120 | HRC45 $\uparrow$ |
|  | 6 | 4400 | 440 | 2400 | 250 | 920 | 100 | Grooving |
|  | 8 | 3600 | 440 | 2000 | 250 | 730 | 100 |  |
|  | 10 | 3000 | 440 | 1600 | 250 | 580 | 100 | H50．6 |
|  | 12 | 2400 | 440 | 1350 | 250 | 480 | 100 | HRC45 |
|  | 16 | 1800 | 440 | 960 | 250 | 370 | 100 |  |

特殊金屬材料加工系列
Special metal materials cutting series

| Material | Carbon Steels．Alloy Steels S45C ，FC ，FCD ，SCM ，S50C ，SKS．．． |  | Alloy Steels．Tool Steels SCr ，SNCM ，SKD11，SKD61，NAK80． |  | Hardened Steels SKD11 |  | Depth Of Cut |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hardness | $\sim$ HRC30 |  | $\sim$ HRC50 |  | ～HRC60 |  |  |
| Diameter | speed（mimin） | feed（mm／min） | speed（mimin） | feed（mm／min） | speed（mim¹） | feed（mm／min） | SD |
| 3 | 22000 | 1800 | 16000 | 1300 | 10000 | 800 |  |
| 4 | 15000 | 1400 | 12000 | 1250 | 7000 | 700 | w |
| 5 | 13000 | 1600 | 10000 | 1400 | 6000 | 650 |  |
| 6 | 11500 | 1650 | 8500 | 1300 | 5000 | 800 | H |
| 8 | 8000 | 1800 | 6500 | 1350 | 3500 | 700 |  |
| 10 | 7000 | 1800 | 5000 | 1400 | 2800 | 750 |  |
| 12 | 6000 | 1700 | 4000 | 1300 | 2300 | 650 |  |
| 16 | 3560 | 1500 | 3000 | 1250 | 1800 | 700 | HRC45 $\uparrow$ |
| 20 | 3000 | 1450 | 2500 | 1250 | 1500 | 780 |  |


| Material | Carbon Steels ．Alloy Steels S45C ，FC ，FCD ，SCM，S50C，SKS．．． |  | Alloy Steels．Tool Steels SCr ，SNCM ，SKD11，SKD61，NAK80． |  | Hardened Steels SKD11 |  | Depth Of Cut |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hardness | $\sim$ HRC30 |  | $\sim$ HRC50 |  | $\sim$ HRC60 |  |  |
| Diameter | speed（mimin ${ }^{-1}$ | feed（mm／min） | speed（mim ${ }^{-1}$ ） | feed（mm／min） | speed（mimim | feed（mm／min） | $H \leq I S D$ |
| 3 | 9000 | 600 | 5500 | 310 | 3500 | 220 |  |
| 4 | 6000 | 600 | 5000 | 400 | 2200 | 220 |  |
| 5 | 4800 | 750 | 4000 | 400 | 1700 | 240 | RC 4 |
| 6 | 4500 | 800 | 3800 | 420 | 1600 | 300 |  |
| 8 | 3500 | 820 | 2800 | 420 | 1000 | 300 | $H \leq I D$ |
| 10 | 3000 | 820 | 1800 | 420 | 900 | 300 |  |
| 12 | 2000 | 820 | 1600 | 350 | 800 | 300 |  |
| 16 | 1500 | 650 | 1000 | 300 | 500 | 150 | HRC45 $\uparrow$ |
| 20 | 1200 | 600 | 900 | 300 | 400 | 150 |  |

鋁合金材料加工系列
Aluminum alloy cutting series
$\frac{\text { 建議加工數據 }}{\text { Recommended cutting condition }} \bullet \mathbf{A B}$

| Material | $\begin{gathered} \text { Aluminum } \\ 1070 \end{gathered}$ |  | $\begin{gathered} \text { Aluminum alloy } \\ 2014 / 4032 / 5052 / 6061 / 7075 \end{gathered}$ |  | Aluminum alloy |  | Depth Of Cut |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Radius | speed（mim ${ }^{-1}$ ） | feed（mm／min） | speed（mim） | feed（mm／min） | speed（mim ${ }^{-1}$ ） | feed（mm／min） |  |
| R0．5 | 50000 | 2300 | 37000 | 2000 | 50000 | 1400 |  |
| R0．75 | 50000 | 3000 | 28000 | 2000 | 50000 | 1800 | H |
| R1 | 44000 | 4000 | 18500 | 2000 | 44000 | 2500 |  |
| R1．5 | 28000 | 4000 | 11500 | 2000 | 28000 | 2500 | ${ }_{\text {H }}^{\text {SOLIR }}$ |
| R2 | 22000 | 4000 | 8800 | 2000 | 22000 | 2500 | $R=$ Radius PS0．2R |
| R3 | 16000 | 4000 | 6400 | 2000 | 16000 | 2500 |  |
| R4 | 12000 | 4000 | 4800 | 2000 | 12000 | 2500 |  |
| R5 | 10000 | 4000 | 4000 | 2000 | 10000 | 2500 |  |
| R6 | 8000 | 4000 | 3200 | 2000 | 8000 | 2500 |  | $\frac{\text { 建議加工數據 }}{\text { Recommmented cuting condition }} \bullet$ ASA－2F


| Material | $\begin{gathered} \text { Aluminum } \\ 1070 \end{gathered}$ |  | $\begin{gathered} \text { Aluminum alloy } \\ 2014 / 4032 / 5052 / 6061 / 7075 \end{gathered}$ |  | Aluminum alloy AC85 |  | Depth Of Cut |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Diameter | speed（mim ${ }^{-1}$ ） | feed（mm／min） | speed（mim ${ }^{-1}$ ） | feed（mm／min） | speed（mim ${ }^{-1}$ ） | feed（mm／min） |  |
| 2 | 37000 | 2000（800） | 16000 | 850（350） | 20000 | 1100（450） | H |
| 3 | 35000 | 2000（900） | 14000 | 850（450） | 18000 | 1100（550） |  |
| 4 | 26000 | 2000（1100） | 11000 | 850（550） | 13000 | 1100（660） | W－$H \leq 15 D$ |
| 5 | 21000 | 2000（1100） | 9000 | 850（550） | 10000 | 1100（660） | w $\leq 0.1 \mathrm{D}$ |
| 6 | 17000 | 2000（1100） | 7000 | 850（550） | 9000 | 1100（660） | D |
| 8 | 13000 | 2000（1100） | 5500 | 850（650） | 7000 | 1100（800） |  |
| 10 | 11000 | 2000（1300） | 7000 | 850（650） | 5500 | 1100（800） |  |
| 12 | 8800 | 2000（1300） | 3600 | 850（800） | 4500 | 1100（800） |  |
| 16 | 6500 | 2000（1100） | 3000 | 850（550） | 3500 | 1100（900） | $D=$ Diameter $H \leq 0.1 D$ |
| 20 | 5300 | 2000（1100） | 2200 | 850（550） | 2500 | 1100（650） | （）：Grooving |



| Material | Aluminum 1070 |  | Aluminum alloy 2014／4032／5052／6061／7075 |  | $\begin{aligned} & \text { Aluminum alloy } \\ & \text { AC85 } \end{aligned}$ |  | Depth Of Cut |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Diameter | speed（ $\mathrm{mim}^{-1}$ ） | feed（mm／min） | speed（mim ${ }^{-1}$ ） | feed（mm／min） | speed（mim ${ }^{-1}$ ） | feed（mm／min） |  |
| 2 | 37000 | 2400（950） | 16000 | 1000（380） | 20000 | 1300（500） | H |
| 3 | 35000 | 2400（1050） | 14000 | 1000（500） | 18000 | 1300（600） |  |
| 4 | 26000 | 2400（1200） | 11000 | 1000（600） | 13000 | 1300（720） | W $H \leq 15 \mathrm{D}$ |
| 5 | 21000 | 2400（1200） | 9000 | 1000（600） | 10000 | 1300（720） | $w \leq 0.2 \mathrm{D}$ |
| 6 | 17000 | 2400（1200） | 7000 | 1000（600） | 9000 | 1300（720） | D |
| 8 | 13000 | 2400（1200） | 5500 | 1000（700） | 7000 | 1300（880） |  |
| 10 | 11000 | 2400（1400） | 7000 | 1000（700） | 5500 | 1300（880） |  |
| 12 | 8800 | 2400（1400） | 3600 | 1000（880） | 4500 | 1300（880） |  |
| 16 | 6500 | 2400（1200） | 3000 | 1000（600） | 3500 | 1300（1000） | D＝Diameter $H \leq 1 D$ |
| 20 | 5300 | 2400（1200） | 2200 | 1000（600） | 2500 | 1300（700） | （）：Grooving |

建議加工數據
Recommended cutting condition $\bullet$ ASB－2F

| Material | Aluminum 1070 |  | $\begin{gathered} \text { Aluminum alloy } \\ 2014 / 4032 / 5052 / 6061 / 7075 \end{gathered}$ |  | Aluminum alloy AC85 |  | Depth Of Cut |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Diameter | speed（mim ${ }^{-1}$ ） | feed（mm／min） | speed（mimi） | feed（mm／min） | speed（mim ${ }^{-1}$ ） | feed（mm／min） |  |
| 2 | 37000 | 2000（800） | 16000 | 850（350） | 20000 | 1100（450） |  |
| 3 | 35000 | 2000（900） | 14000 | 850（450） | 18000 | 1100（550） |  |
| 4 | 26000 | 2000（1100） | 11000 | 850（550） | 13000 | 1100（660） | W $\quad$ H 15 S |
| 5 | 21000 | 2000（1100） | 9000 | 850（550） | 10000 | 1100（660） | WS0．1D |
| 6 | 17000 | 2000（1100） | 7000 | 850（550） | 9000 | 1100（660） | D |
| 8 | 13000 | 2000（1100） | 5500 | 850（650） | 7000 | 1100（800） |  |
| 10 | 11000 | 2000（1300） | 7000 | 850（650） | 5500 | 1100（800） |  |
| 12 | 8800 | 2000（1300） | 3600 | 850（800） | 4500 | 1100（800） |  |
| 16 | 6500 | 2000（1100） | 3000 | 850（550） | 3500 | 1100（900） | $D=$ Diameter $H \leq 0.1 \mathrm{D}$ |
| 20 | 5300 | 2000（1100） | 2200 | 850（550） | 2500 | 1100（650） | （）：Grooving |

$\frac{\text { 建議加工數據 }}{\text { Recommended cutting condition }}$
ASB－3F

| Material | Aluminum1070 |  | $\begin{gathered} \text { Aluminum alloy } \\ 2014 / 4032 / 5052 / 6061 / 7075 \end{gathered}$ |  | $\begin{aligned} & \text { Aluminum alloy } \\ & \text { AC85 } \end{aligned}$ |  | Depth of Cut |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Diameter | speed（mim ${ }^{-1}$ ） | feed（mm／min） | speed（mimi） | feed（mm／min） | speed（mim ${ }^{-1}$ ） | feed（mm／min） |  |
| 2 | 37000 | 2400（950） | 16000 | 1000（380） | 20000 | 1300（500） | н |
| 3 | 35000 | 2400（1050） | 14000 | 1000（500） | 18000 | 1300（600） | － |
| 4 | 26000 | 2400（1200） | 11000 | 1000（600） | 13000 | 1300（720） | ${ }_{H \leq 15}$ S |
| 5 | 21000 | 2400（1200） | 9000 | 1000（600） | 10000 | 1300（720） | W $\leq 0.2 \mathrm{D}$ |
| 6 | 17000 | 2400（1200） | 7000 | 1000（600） | 9000 | 1300（720） | D |
| 8 | 13000 | 2400（1200） | 5500 | 1000（700） | 7000 | 1300（880） |  |
| 10 | 11000 | 2400（1400） | 7000 | 1000（700） | 5500 | 1300（880） |  |
| 12 | 8800 | 2400（1400） | 3600 | 1000（880） | 4500 | 1300（880） |  |
| 16 | 6500 | 2400（1200） | 3000 | 1000（600） | 3500 | 1300（1000） | $D=$ Diameter $H \leq 1 D$ |
| 20 | 5300 | 2400（1200） | 2200 | 1000（600） | 2500 | 1300（700） | （）：Grooving |

$\frac{\text { 建議加工數據 }}{\text { Recommended dutting condition }} \bullet$ ASC－3F

| Material | Aluminum <br> 1070 |  | Aluminum alloy <br> $2014 / 4032 / 5052 / 6061 / 7075$ | Aluminum alloy <br> AC85 | Depth of Cut |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

鋁合金材料加工系列
Aluminum alloy cutting series

建議加工數據
$\frac{\text { Recommended cutting condition }}{\text { 建挛加工數據 }}$

| Material | $\begin{gathered} \text { Aluminum } \\ 1070 \end{gathered}$ |  | $\begin{array}{\|c\|} \text { Aluminum alloy } \\ 2014 / 4032 / 5052 / 6061 / 7075 \end{array}$ |  | $\underset{\text { AC85 }}{\text { Aluminu }}$ |  | Depth Of Cut |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Diameter | speed（mim ${ }^{-1}$ ） | feed（mm／min） | speed（mim ${ }^{-1}$ ） | feed（mm／min） | speed（mim ${ }^{-1}$ ） | feed（mm／min） |  |
| 2 | 30000 | 600（500） | 15000 | 250（250） | 18000 | 300（300） |  |
| 3 | 26000 | 600（500） | 11000 | 250（250） | 13500 | 300（350） |  |
| 4 | 20000 | 600（550） | 8500 | 250（250） | 10000 | 300（350） | W $\quad$ H 25.5 |
| 5 | 15600 | 600（550） | 6700 | 250（200） | 8000 | 300（350） | WS0．15D |
| 6 | 13500 | 600（550） | 5500 | 250（200） | 6700 | 300（350） | ． |
| 8 | 10000 | 600（600） | 4200 | 250（200） | 5000 | 300（350） |  |
| 10 | 7500 | 600（600） | 3300 | 250（200） | 4000 | 300（350） |  |
| 12 | 6700 | 600（600） | 2700 | 250（200） | 3400 | 300（350） |  |
| 16 | 5000 | 600（500） | 2300 | 250（200） | 2500 | 300（350） | $D=$ Diameter $\mathrm{H} \leq 0$ |
| 20 | 4000 | 600（500） | 1700 | 250（200） | 2000 | 300（350） | （）：Grooving |


| Material | Carbon Steels ．Alloy Steels S45C ，FC ，FCD ，SCM ，S50C ，SKS．．． |  | Alloy Steels ．Tool Steels SCr ，SNCM，SKD11，SKD61，NAK80 |  | Hardened Steels SKD11 |  | Depth Of Cut |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hardness | ～HRC30 |  | $\sim$ HRC50 |  | ～HRC60 |  |  |
| Diameter | speed（mim ${ }^{-1}$ ） | feed（mm／min） | speed（ $\mathrm{mim}^{-1}$ ） | feed（mm／min） | speed（mim ${ }^{-1}$ ） | feed（mm／min） |  |
| 3 | 25000 | 1000 | 25000 | 1000 | 9000 | 350 | － |
| 4 | 18000 | 1200 | 18000 | 1200 | 7000 | 400 | W ${ }^{H \leq 1.5 D}$ |
| $\sim$ | 15000 | 1300 | 15000 | 1300 | 6000 | 450 | $W \leq 0.10$ |
| $\stackrel{1}{\circ}$ | 12000 | 1400 | 12000 | 1400 | 5000 | 500 |  |
| 在 | 9000 | 1500 | 9000 | 1500 | 4000 | 550 |  |
| $\quad 10$ | 7000 | 1800 | 7000 | 1800 | 3000 | 600 |  |
| 12 | 6000 | 1900 | 6000 | 1900 | 2500 | 650 |  |
| 16 | 4500 | 1900 | 4500 | 1900 | 1500 | 650 | $D=$ Diameter $H \leq 0.2 D$ |
| $\begin{aligned} & \text { Q } \\ & 0 . \\ & \vdots \\ & \text { B. } \end{aligned}$ | 25000 | 800 | 25000 | 800 | 9000 | 350 |  |
|  | 18000 | 800 | 18000 | 800 | 7000 | 400 |  |
|  | 15000 | 900 | 15000 | 900 | 6000 | 450 |  |
|  | 12000 | 1000 | 12000 | 1000 | 5000 | 500 |  |
|  | 9000 | 1000 | 9000 | 1000 | 4000 | 550 |  |
|  | 7000 | 1200 | 7000 | 1200 | 3000 | 600 |  |
|  | 6000 | 1300 | 6000 | 1300 | 2500 | 650 |  |
|  | 4500 | 1300 | 4500 | 1300 | 1500 | 650 |  |

球刀實際切削直徑
Ball Nose End Milling Real Diameter

| 半徑 ${ }^{(8)}$ | 直徑（0ial | 切削深度 Depth of Cut |  |  |  |  |  | Ad（mm） |  |  | 0.3 | 0.5 | 0.8 | 1.0 | 2.0 | 3.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 0.01 | 0.02 | 0.03 | 0.04 | 0.05 | 0.08 | 0.1 | 0.15 | 0.2 |  |  |  |  |  |  |
| 0.1 | 0.2 | 0.087 | 0.12 | 0.143 | 0.16 | 0.173 | 0.196 | 0.2 |  |  |  |  |  |  |  |  |
| 0.2 | 0.4 | 0.125 | 0.174 | 0.211 | 0.24 | 0.265 | 0.32 | 0.35 | 0.39 | 0.4 |  |  |  |  |  |  |
| 0.3 | 0.6 | 154 | 0.215 | 0.262 | 0.299 | 0.332 | 0.41 | 0.45 | 0.52 | 0.57 | 0.6 |  |  |  |  |  |
| 0.4 | 0.8 | ． 178 | 0.25 | 0.304 | 0.349 | 0.387 | 0.48 | 0.53 | 0.62 | 0.69 | 0.77 | 0.77 | －－－－－ |  |  |  |
| 0.5 | 1 | 0.199 | 0.28 | 0.341 | 0.392 | 0.436 | 0.54 | 0.6 | 0.71 | 0.8 | 0.92 | 1 | $\cdots$ |  |  |  |
| 1 | 2 | 0.282 | 0.398 | 0.486 | 0.56 | 0.624 | 0.78 | 0.87 | 1.05 | 1.2 | 1.43 | 1.73 | 1.96 | 2 |  |  |
| 1.5 | 3 | 0.346 | 0.488 | 0.597 | 0.688 | 0.768 | 0.97 | 1.08 | 1.31 | 1.5 | 1.8 | 2.24 | 2.65 | 2.83 | 2.83 |  |
| 2 | 4 | 0.399 | 0.564 | 0.69 | 0.796 | 0.889 | 1.12 | 1.25 | 1.52 | 1.74 | 2.11 | 2.65 | 3.2 | 3.46 | 4 |  |
| 2.5 | 5 | ． 447 | 0.631 | 0.772 | 0.891 | 0.995 | 1.25 | 1.4 | 1.71 | 1.96 | 2.37 | 3 | 3.67 | 4 | 4.9 | 4.9 |
| 3 | 6 | ． 489 | 0.692 | 0.846 | 0.977 | 1.091 | 1.38 | 1.54 | 1.87 | 2.15 | 2.62 | 3.32 | 4.08 | 4.47 | 5.66 | 6 |
| 4 | 8 | 0.565 | 0.799 | 0.978 | 1.129 | 1.261 | 1.59 | 1.78 | 2.17 | 2.5 | 3.04 | 3.87 | 4.8 | 5.29 | 6.93 | 7.75 |
| 5 | 10 | 0.632 | 0.894 | 1.094 | 1.262 | 1.411 | 1.78 | 1.99 | 2.43 | 2.8 | 3.41 | 4.36 | 5.43 | 6 | 8 | 9.17 |
| 6 | 12 | 0.693 | 0.979 | 1.198 | 1.383 | 1.546 | 1.95 | 2.18 | 2.67 | 3.07 | 3.75 | 4.8 | 5.99 | 6.63 | 8.94 | 10.3 |
| 7 | 14 | 0.748 | 1.058 | 1.295 | 1.495 | 1.67 | 2.11 | 2.36 | 2.88 | 3.32 | 4.05 | 5.2 | 6.5 | 7.21 | 9.8 | 11.4 |
| 8 | 16 | 0.8 | 1.131 | 1.384 | 1.598 | 1.786 | 2.26 | 2.52 | 3.08 | 3.56 | 4.34 | 5.57 | 6.97 | 7.75 | 10.58 | 12.4 |
| 9 | 18 | 0.848 | 1.199 | 1.468 | 1.695 | 1.895 | 2.39 | 2.68 | 3.27 | 3.77 | 4.61 | 5.92 | 7.42 | 8.25 | 11.31 | 13.4 |
| 10 | 20 | 0.894 | 1.264 | 1.548 | 1.787 | 1.997 | 2.52 | 2.82 | 3.45 | 3.98 | 4.86 | 6.24 | 7.84 | 8.72 | 12 | 14.2 |

實際直徑計算公式 Calculation of Real Dia．

## $\mathrm{d}=2 \sqrt{\mathrm{Ad}(\mathrm{D}-A d)}$


－主軸轉速表
Spindle Speed Table

| 直徑 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\varnothing$ | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 00 | 120 | 150 | 180 | 200 | 250 | 300 |
| 0.5 | 12740 | 19110 | 25480 | 31850 | 38220 | 44590 | 50960 | 57320 | 63690 | 76430 | 95540 | 114650 | 1273 | 5922 | 19108 |
| 0.6 | 10620 | 15920 | 21230 | 26540 | 31850 | 37150 | 42460 | 47770 | 53080 | 63690 | 79620 | 95540 | 1061 | 132700 | 159 |
| ． 7 | 9100 | 1365 | 1820 | 750 | 27300 | 31850 | 36400 | 40950 | 500 | 54590 | 68240 | 890 |  | 113740 | 13649 |
| 0.8 | 7960 | 11940 | 920 | 900 | 890 | 27870 | 850 | 5830 | 39810 | 47770 | 59710 | 71660 | 79620 | 9952 | 119430 |
| 0.9 | 80 | 10620 | 14150 | 17690 | 21230 | 24770 | 28310 | 31850 | 35390 | 42640 | 53080 | 63690 | 70770 | 3460 | 10616 |
| 1 | 70 | 550 | 12740 | 15920 | 19110 | 2290 | 2580 | 28660 | 31850 | 38220 | 47770 | 57320 | 633 | 79620 | 9554 |
| 2 | 180 | 4780 | 6370 | 7960 | 9550 | 11150 | 12740 | 14330 | 15920 | 19110 | 23890 | 28660 | 31850 | 398 | 4777 |
| 3 | 2120 | 3180 | 50 | 5310 | 6370 | 430 | 490 | 9550 | 10620 | 12740 | 15920 | 19110 | 21230 | 26540 | 3185 |
| 4 | 1590 | 2390 | 180 | 3980 | 4780 | 5570 | 6370 | 7170 | 7960 | 9550 | 11940 | 14330 | 15920 | 199 | 2389 |
| 5 | 1270 | 1910 | 2550 | 3180 | 3820 | 4460 | 5100 | 5730 | 6370 | 7640 | 9550 | 11460 | 12740 | 15920 | 191 |
| 6 | 1060 | 590 | 2120 | 650 | 3180 | 20 | 4250 | 4780 | 5310 | 6370 | 7960 | 9550 | 10620 | 13270 | 59 |
| 8 | 800 | 1190 | 1590 | 1990 | 2390 | 2790 | 3180 | 3580 | 3980 | 4780 | 5970 | 7170 | 7960 | 9950 | 1194 |
| 10 | 640 | 960 | 1270 | 1590 | 1910 | 2230 | 2550 | 2870 | 3180 | 3820 | 4780 | 5730 | 6370 | 796 | 955 |
| 12 | 530 | 800 | 1060 | 1330 | 1590 | 1860 | 2120 | 2390 | 2650 | 3180 | 3980 | 4780 | 5310 | 6630 | 7960 |
| 14 | 450 | 680 | 910 | 1140 | 1360 | 1590 | 1820 | 2050 | 2270 | 2730 | 3410 | 4090 | 4550 | 5690 | 682 |
| 15 | 420 | 640 | 850 | 1060 | 1270 | 1490 | 1700 | 1910 | 2120 | 2550 | 3180 | 3820 | 4250 | 5310 | 63 |
| 16 | 400 | 600 | 800 | 1000 | 1190 | 1390 | 1590 | 1790 | 1990 | 2390 | 2990 | 3580 | 3980 | 4980 | 597 |
| 20 | 320 | 480 | 640 | 800 | 960 | 1110 | 1270 | 1430 | 1590 | 1910 | 2390 | 2870 | 3180 | 3980 | 4780 |
| 25 | 250 | 380 | 510 | 640 | 760 | 890 | 102 | 1150 | 127 | 15 | 1910 | 22 | 25 | 3180 |  |

## Calculation for Cutting Speed．Spindle Speed and Feed

$$
\begin{aligned}
\text { Cutting Speed }(V) & =\frac{\pi \times D \times N}{1,000} \\
\text { Spindle Speed }(N) & =V \pi D \times 1,000 \\
\text { Feed }(F) & =N \times f z \times Z \\
\text { Feed per Tooth }(f z) & =\frac{F}{N \times Z}
\end{aligned}
$$

切削速度 $V=$ Cutting Speed（ $\mathrm{m} / \mathrm{min}$ ）圆周率 $\pi=3.14$ The circular Constant直徑 $\mathrm{D}=$ Diameter $(\mathrm{mm})$
主軲轉速 $\mathrm{N}=$ Spindle Speed $\left(\mathrm{min}^{-1}\right)$進給 $F=$ Feed（ $\mathrm{mm} / \mathrm{min}$ ）單刃進給量 $\mathrm{fz}=$ Feed per Tooh（mm／tooth）刃數 $Z=$ Number of Flutes

## 選擇刀具刃數

Selection of Number of Flute

|  | 2刃 2－Flutes | 3 3 3－Flutes | 4刃 4－Flutes | 6 刃 6－Flutes |
| :---: | :---: | :---: | :---: | :---: |
| 溝銑Slotting | （0） | （a） | $\bigcirc$ | X |
| 側銑 Side Milling | $\bigcirc$ | （ ${ }^{\text {a }}$ | （a） | （0） |

通常兩刃和三刃的刀會被選擇用在插槽的加工，因為他們有比較大的容首槽。
四刃和六刃因切展豦理佳，建撞用在側銑的部份
Generally 2 －flutes and 3 －flutes are selected for slotting because of the larger chip pocke 4 －flutes and 6 －flutes are recommended for side milling as no promble of chip disposal．

## 切削速度

## Cutting Speed（V）

决定切削速度的因素有：刀具的材質，刀具直徑，刀長，加工材啠，切削機器夾持的㓮性，機器的结構精準度，切削液．．．．等等。一般刀具材質和加工材質是決定切削速度主要因素
Appropriate Cutting Speed should be decided by parameters such as tool material，diamete， Appropriate eut，of cut，work material，cutting machine，rigidity of tool holder，machining configuration， accuracy，cutting fluid，and etc．
Generally tool material and work material are main factors to determine the Cutting Speed．

| 工件 Work Materials | 切削速度 $V$ Cutting Speed（m／min） |  |
| :---: | :---: | :---: |
|  | 鵭䤡Carbide | 淦層鵭鍾 Coated Carbide |
| 碳铜 Carbon Steels（550） | 20～40 | 40～80 |
| 合金鋼 Alloy Steels（SCMSKD） | 20～35 | 35～60 |
| 調質鋼 Prehardened Steels（NARHPM） | 15～30 | 30～50 |
| 不鋉龬Stainless Steels（sUS304） | 5～20 | 10～30 |
| 熱處理鋼Hardened Steels（SKD61 HRC60） | － | 20～40 |

單刃進給量 Feed per Tooth（fz）

刀具每刃進给速率是影響加工的重要因素，決定它的因素有：刀具的直徑，類型，加工材質，切削機器夾持的刪性，機器的結構，精準度，和切剪深度
Feed per Tooth is an important element for efficient machining which should be determined by parameters such as tool diameter，type，work material，cutting machine，rigidity of tool holder machining configuration，accuracy and cutting depth．

| 刃徑 Diameter $(\mathrm{mm})$ | 單刃進给量 Feed per tooth（mm／tooth） |  |
| :---: | :---: | :---: |
|  | 2刃 2 －Flutes | 4刃 4－Flutes |
| 1 | $0.001 \sim 0.005$ |  |
| 6 | $0.02 \sim 0.04$ | $0.01 \sim 0.03$ |
| 10 | $0.04 \sim 0.08$ | $0.03 \sim 0.06$ |
| 20 | $0.08 \sim 0.12$ | $0.06 \sim 0.1$ |


| 洛氏硬度 C級150kg鑜石圆錐 <br> Rockwell Hardness C Scale 150 kg Brale （HRC） （HRC） | $\begin{gathered} \text { 維克氏硬度 } \\ \text { Didmond Pramid } \\ \text { Harriness } \begin{array}{l} \text { Numberf Vickers } \\ (\text { HH) } \end{array} \end{gathered}$ |  | 洛氏硬度 A級60kg镮石圆錐 <br> Rockwell Hardness A Scale 60 kg Brale （HRA） | 蕭氏硬度 <br> Shore Scleroscope Hardness Numbe （HS） | 抗拉強度 （近似值） <br> Approx Tensile $\mathrm{N} / \mathrm{mm}^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 68 | 940 | － | 85.6 | 97 | － |
| 67 | 900 | － | 85.5 | 95 | － |
| 66 | 865 | － | 84.5 | 92 | － |
| 65 | 832 | － | 83.9 | 91 | － |
| 64 | 800 | － | 83.4 | 88 | － |
| 63 | 772 | － | 82.8 | 87 | － |
| 62 | 746 | － | 82.3 | 85 | － |
| 61 | 720 | － | 81.8 | 83 | － |
| 60 | 697 | － | 81.2 | 81 | － |
| 59 | 674 | － | 80.7 | 80 | － |
| 58 | 653 | － | 80.1 | 78 | － |
| 57 | 633 | － | 79.6 | 76 | － |
| 56 | 613 | － | 79.0 | 75 | － |
| 55 | 595 | － | 78.5 | 74 | 2079 |
| 54 | 577 | － | 78.0 | 72 | 2010 |
| 53 | 560 | － | 77.4 | 71 | 1952 |
| 52 | 544 | 500 | 76.8 | 69 | 1883 |
| 51 | 528 | 487 | 76.3 | 68 | 1824 |
| 50 | 513 | 475 | 75.9 | 67 | 1755 |
| 49 | 498 | 464 | 75.2 | 66 | 1687 |
| 48 | 484 | 451 | 74.7 | 64 | 1639 |
| 47 | 471 | 442 | 74.1 | 63 | 1578 |
| 46 | 458 | 432 | 73.6 | 62 | 1530 |
| 45 | 446 | 421 | 73.1 | 60 | 1481 |
| 44 | 434 | 409 | 72.5 | 58 | 1432 |
| 43 | 423 | 400 | 72.0 | 57 | 1383 |
| 42 | 412 | 390 | 71.5 | 56 | 1334 |
| 41 | 402 | 381 | 70.9 | 55 | 1294 |
| 40 | 392 | 371 | 70.4 | 54 | 1245 |
| 39 | 382 | 362 | 69.9 | 52 | 1216 |
| 38 | 372 | 353 | 69.4 | 51 | 1177 |
| 37 | 363 | 344 | 68.9 | 50 | 1157 |
| 36 | 354 | 336 | 68.4 | 49 | 1118 |
| 35 | 345 | 327 | 67.9 | 48 | 1079 |
| 34 | 336 | 319 | 67.4 | 47 | 1059 |
| 33 | 327 | 311 | 66.8 | 46 | 1030 |
| 32 | 318 | 301 | 66.3 | 44 | 1000 |
| 31 | 310 | 294 | 65.8 | 43 | 981 |
| 30 | 302 | 286 | 65.3 | 42 | 952 |
| 29 | 294 | 279 | 64.7 | 41 | 932 |
| 28 | 285 | 271 | 64.3 | 41 | 912 |
| 27 | 279 | 264 | 63.8 | 40 | 883 |
| 26 | 272 | 258 | 63.3 | 38 | 863 |
| 25 | 266 | 253 | 62.8 | 38 | 843 |
| 24 | 260 | 247 | 62.4 | 37 | 824 |
| 23 | 254 | 243 | 62.0 | 36 | 804 |
| 22 | 248 | 237 | 61.5 | 35 | 785 |
| 21 | 243 | 231 | 61.0 | 35 | 775 |
| 20 | 238 | 226 | 60.5 | 34 | 755 |
| （18） | 230 | 219 | － | 33 | 736 |
| （16） | 222 | 212 | － | 32 | 706 |
| （14） | 213 | 203 | － | 31 | 677 |
| （12） | 204 | 194 | － | 29 | 647 |
| （10） | 196 | 187 | － | 28 | 618 |
| （ 8） | 188 | 179 | － | 27 | 598 |
| （ 6） | 180 | 171 | － | 26 | 579 |
| （4） | 173 | 165 | － | 25 | 549 |
| （ 2） | 166 | 158 | － | 24 | 530 |
| （0） | 160 | 152 | － | 24 | 520 |

Factors for End Mill Operation

| 因素 <br> FACTOR | 說明\＆建議 <br> INSTRUCTION AND ADVICE |
| :---: | :---: |
| 機器的剛性 <br> Rigidity of Machine | 1．使用對的機器 <br> Use a right machine． <br> 2．根據機器的剛性去調整適合的切削數據 Adjust cutting conditions according to the rigidity of machine． |
| 銑刀和筒夾的偏橮值 <br> Collet Chuck and Run out of End Mill | 1．使用適合且準確的夾頭 Use a right and precise collet chuck． <br> 2．刀的偏擺值降到最低 <br> Minimize the run out of end mill． |
| 工作夾頭 Work Clamp | 1．需夾緊工件 Work piece must be firmly clamped． <br> 2．萬一工件没夾緊，降低切削數據 <br> In case work piece cannot be firmly clamped，relieve cutting condition． |
| 切削液和排屑 <br> Cutting Fluid and Chips | 1．足夠的切削液 <br> Give a sufficient cutting fluid． <br> 2．建議在大量切削時要用水基性的切削液 <br> Recommend water－base cutting fluid for heavy cutting． <br> 3．有些銑刀適用於乾式切削 <br> Some end mills apply dry cutting only． <br> 4．在乾式切削時用吹風的方式 Use air blow for dry cutting． <br> 5．移除加工區的切屑 Remove chips from working area． |
| 選刀 <br> Selection of End Mill | 1．根據加工材質和大小選擇最適合的刀 <br> Select most suitable end mills according to work material and dimension． <br> 2．參考前面的索引表 <br> Refer to the index table on front page． |
| 切削數據 <br> Cutting Conditions | 1．參考切削數據表 <br> Refer to recommend milling condition table． <br> 2．根據工件．機器剛性和夾具去做數據的調整 <br> It is necessary to adjust conditions according to the machine rigidity and clamping condition of work piece． |
| 刀具伸長量 <br> Overhang of End Mill from tool holder | 1．刀柄夾持盡量越多好，刀具露出的部份盡可能少一點 Overhang of end mill must be as short as possible from tool holder． <br> 2．當刀柄夾持無法太深時，那就要放慢切削的速度 In case overhang cannot be shorten，relieve cutting condition． |

Troubleshooting for End Mill Operation

| 故障 <br> SYMPTOMS OFTROUBLES | 原因 <br> CAUSE | 解決 <br> SOLUTION |
| :---: | :---: | :---: |
| 加工時不正常異音 Chattering | 主軸轉速過高 <br> - 進給過多 <br> - 有效長或銑刀過長 <br> - 工件沒夾緊 <br> - 切削刃磨損 <br> - 筒夾徧擺過度 | - 減少主軸速度 <br> - 減少進給 <br> - 調整有效長和刀具伸長量縮短 <br> - 夾緊工件 <br> - 換新刀具或修磨 <br> - 調整夾具 |
| 刀具破損 Breakage of end mill | 切深過深 <br> 容屑槽堵塞 <br> 每一刃進給過多 <br> 切削刃磨損 | 減少切深 <br> 調整冷卻液噴嘴到正確位置 <br> 減少每一刃進給 <br> 使用新刀具或修磨 |
| 刀具崩刃 <br> Chipping of cutting edge | 切深過深 <br> 進給過多 <br> 工件沒夾緊 <br> 主軸轉速過高 <br> 有效長或銑刀過長切削刃磨損 <br> 切刃切屑溶融 <br> 過多切削液 | - 減少切深 <br> - 減少進給 <br> - 夾緊工件 <br> - 減少主軸速度 <br> - 調整有效長和刀具伸長量縮短 <br> - 使用新刀具或修磨 <br> - 選擇適當鍍層 <br> - 使用氣冷或是油雱 |
| 異常耗損 Abnormal wear | 主軸轉速過高 <br> －刀具速度太低 | - 減少主軸速度 <br> - 增加速度 |
| 切屑堵塞 <br> Clogging and Depositing | - 容屑槽堵塞 <br> - 進給過多 <br> - 切深過深 <br> - 不對的刀刃數 <br> - 刀具加工磨秏 | - 調整冷卻液噴嘴到正確位置 <br> - 減少進給 <br> - 減少切深 <br> - 使用刀刃數較少的刀具 <br> - 使用新刀具或修磨 |
| 刀具徧轉 <br> Deflection of end mill | 進給過多 <br> 切深過深 <br> 有效長或鉄刀過長大螺旋角刀刃 | 減少進給 <br> 減少切深 <br> 調整有效長和刀具伸長量縮短使用小螺旋角刀刃 |
| 表面有毛刺 <br> Burr on finished surface | 刀具加工磨損 <br> 刀具螺旋角太小 <br> 切深過深 | - 使用新刀具或修磨 <br> - 使用更小螺旋角的刀具 <br> - 減少切深 |
| 表面粗糙度差 <br> Poor surface roughness | 刀具加工磨損 <br> 切屑咬勾 <br> - 進給過多 <br> - 有效長或銑刀過長 <br> - 主軸轉速太慢 <br> - 表面切削不一 <br> - 筒夾徧罹過度 | - 使用新刀具或修磨 <br> - 使用冷卻液 <br> - 減少進給 <br> - 調整有效長和刀具伸長量縮短 <br> - 增加速度 <br> - 改善中肧加工 <br> - 調整筒夾徧擺 |
| 加工精度差 <br> Poor machining accuracy | 過熱主軸不穏定表面切削不一進給過多筒夾编攞過度 | 生產前先暖機改善中胚加工減少進給調整筒夾徧擺 |


| Symptoms of troubles | Cause | Solution |
| :---: | :---: | :---: |
| Chattering | - Excessive spindle speed <br> - Excessive feed <br> - Excessive long of effective length or overhang of end mill <br> - Work piece is not firmly clamped <br> - Wear of cutting edge progressed <br> - Excessive chucking runout | - Reduce spindle speed <br> - Reduce feed <br> - Adjust effective length and overhang as short as possible <br> - Clamped work piece firmly <br> - Use new end mill or regrind <br> - Adjust chucking runout |
| Breakage of end mill | - Excessive depth of cut <br> - Chips clogged <br> - Excessive feed per tooth <br> - Wear of cutting edge progressed | - Reduce depth of cut <br> - Adjust coolant nozzle to right direction to disposed <br> - Reduce feed per tooth <br> - Use new end mill or regrind |
| Chipping of cutting edge | - Excessive depth of cut <br> - Excessive feed <br> - Work piece is not firmly clamped <br> - Excessive spindle speed <br> - Excessive long of effective length or overhang of end mill <br> - Wear of cutting edge progressed <br> - Bulit up edge <br> - Excessive cooling | - Reduce depth of cut <br> - Reduce feed <br> - Clamped work piece firmly <br> - Reduce spindle speed <br> - Adjust effective length and overhang as short as possible <br> - Use new end mill or regrind <br> - Choose appropriate coating <br> - Use air blow or oil mist |
| Abnormal wear | - Excessive spindle speed <br> - Tool of low feed | - Reduce spindle speed <br> - Increase feed |
| Clogging and Depositing | - Chips are not well disposed <br> - Excessive feed <br> - Excessive depth of cut <br> - Inappropriate number of flutes <br> - Wear of cutting edge progressed | - Adjust coolant nozzle to right direction <br> to dispose chips <br> - Reduce feed <br> - Reduce depth of cut <br> - Use fewer flutes end mill <br> - Use new end mill or regrind |
| Deflection of end mill | - Excessive feed <br> - Excessive depth of cut <br> - Excessive long of effective length or overhang of end mill <br> - Large helix angle of flutes | - Reduce feed <br> - Reduce depth of cut <br> - Adjust effective length and overhang as short as possible <br> - Use smaller helix angle |
| Burr on finished surface | - Wear of cutting edge progressed <br> - Small helix angle of flutes <br> - Excessive depth of cut | - Use new end mill or regrind <br> - Use smaller helix angle <br> - Reduce depth of cut |
| Poor surface roughness | - Wear of cutting edge progressed <br> - Chips bite <br> - Excessive feed <br> - Excessive long of effective length or overhang of end mill <br> - Too low spindle speed <br> - Stock removals vary for finishing <br> - Excessive chucking runout | - Use new end mill or regrind <br> - Use coolant to remove chips <br> - Reduce feed <br> - Adjust effective length and overhang as short as possible <br> - Increase spindle speed <br> - Improve semi-finishing process <br> - Adjust chucking runout |
| Poor machining accuracy | - Inconsistent thermal extention of spindle <br> - Stock removals vary for finishing <br> - Excessive feed <br> - Excessive chucking runout | - Warm up spindle by idling before staring operation <br> - Improve semi-finishing process <br> - Reduce feed <br> - Adjust chucking runout |

